Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Clin Virol ; 165: 105499, 2023 08.
Article in English | MEDLINE | ID: covidwho-2328193

ABSTRACT

SARS-CoV-2 is the causative agent of the acute respiratory disease COVID-19. In addition to the full length positive-sensed, single-stranded genomic RNA (gRNA), viral subgenomic RNAs (sgRNAs) that are required for expression of the 3' region of the genome are synthesized in virus-infected cells. However, whether these sgRNA-species might be used as a measure of active virus replication and to predict infectivity is still under debate. The commonly used methods to monitor and quantitate SARS-CoV-2 infections are based on RT-qPCR analysis and the detection of gRNA. The infectivity of a sample obtained from nasopharyngeal or throat swabs is associated with the viral load and inversely correlates with Ct-values, however, a cut-off value predicting the infectivity highly depends on the performance of the assay. Furthermore, gRNA derived Ct-values result from nucleic acid detection and do not necessarily correspond to active replicating virus. We established a multiplex RT-qPCR assay on the cobas 6800 omni utility channel concomitantly detecting SARS-CoV-2 gRNAOrf1a/b, sgRNAE,7a,N, and human RNaseP-mRNA used as human input control. We compared the target specific Ct-values with the viral culture frequency and performed ROC curve analysis to determine the assay sensitivity and specificity. We found no advantage in the prediction of viral culture when using sgRNA detection compared to gRNA only, since Ct-values for gRNA and sgRNA were highly correlated and gRNA offered a slightly more reliable predictive value. Single Ct-values alone only provide a very limited prediction for the presence of replication competent virus. Hence, careful consideration of the medical history including symptom onset has to be considered for risk stratification.


Subject(s)
COVID-19 , RNA, Viral , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/diagnosis , Subgenomic RNA , Genomics , Virus Replication
2.
J Infect Dis ; 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2296790

ABSTRACT

BACKGROUND: Control of SARS-CoV-2 (SCV-2) transmission requires understanding SCV-2 replication dynamics. METHODS: We developed a multiplexed droplet digital PCR (ddPCR) assay to quantify SCV-2 subgenomic RNAs (sgRNAs), which are only produced during active viral replication, and discriminate them from genomic RNAs (gRNAs). We applied the assay to specimens from 144 people with single nasopharyngeal samples and 27 people with >1 sample. Results were compared to qPCR and viral culture. RESULTS: sgRNAs were quantifiable across a range of qPCR cycle threshold (Ct) values and correlated with Ct values. The ratio of sgRNA:gRNA was stable across a wide range of Ct values, whereas adjusted amounts of N sgRNA to a human housekeeping gene declined with higher Ct values. Adjusted sgRNA and gRNA amounts were quantifiable in culture-negative samples, although levels were significantly lower than in culture-positive samples. Daily testing of 6 persons revealed that sgRNA is concordant with culture results during the first week of infection but may be discordant with culture later in infection. Further, sgRNA:gRNA is constant during infection despite changes in viral culture. CONCLUSIONS: Ct values from qPCR correlate with active viral replication. More work is needed to understand why some cultures are negative despite presence of sgRNA.

3.
Front Genet ; 14: 1086865, 2023.
Article in English | MEDLINE | ID: covidwho-2266860

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) pandemic poses a serious public health risk. In this report, we present a modified sequencing workflow using short tiling (280bp) amplicons library preparation method paired with Illumina's iSeq100 desktop sequencer. We demonstrated the utility of our workflow in identifying gapped reads that capture characteristics of subgenomic RNA junctions within our patient cohort. These analytical and library preparation approaches allow a versatile, small footprint and decentralized deployment that can facilitate comprehensive genetics characterizations during outbreaks. Based on the sequencing data, Taqman assays were designed to accurately capture the quantity of subgenomic ORF5 and ORF7a RNA from patient samples and demonstrated utility in tracking subgenomic titres in patient samples when combined with a standard COVID-19 qRT-PCR assay.

4.
J Infect Dis ; 2023 Mar 08.
Article in English | MEDLINE | ID: covidwho-2257228

ABSTRACT

BACKGROUND: SARS-CoV-2 genomic and subgenomic RNA levels are frequently used as a correlate of infectiousness. The impact of host factors and SARS-CoV-2 lineage on RNA viral load is unclear. METHODS: Total nucleocapsid (N) and subgenomic N (sgN) RNA levels were measured by RT-qPCR in specimens from 3,204 individuals hospitalized with COVID-19 at 21 hospitals. RT-qPCR cycle threshold (Ct) values were used to estimate RNA viral load. The impact of time of sampling, SARS-CoV-2 variant, age, comorbidities, vaccination, and immune status on N and sgN Ct values were evaluated using multiple linear regression. RESULTS: Ct values at presentation for N (mean ±standard deviation) were 24.14±4.53 for non-variants of concern, 25.15±4.33 for Alpha, 25.31±4.50 for Delta, and 26.26±4.42 for Omicron. N and sgN RNA levels varied with time since symptom onset and infecting variant but not with age, comorbidity, immune status, or vaccination. When normalized to total N RNA, sgN levels were similar across all variants. CONCLUSIONS: RNA viral loads were similar among hospitalized adults, irrespective of infecting variant and known risk factors for severe COVID-19. Total N and subgenomic RNA N viral loads were highly correlated, suggesting that subgenomic RNA measurements adds little information for the purposes of estimating infectivity.

5.
Bull Natl Res Cent ; 47(1): 28, 2023.
Article in English | MEDLINE | ID: covidwho-2252528

ABSTRACT

Background: SARS-CoV-2 is the causative agent of worldwide pandemic disease coronavirus disease 19. SARS-CoV-2 bears positive sense RNA genome that has organized and complex pattern of replication/transcription process including the generation of subgenomic RNAs. Transcription regulatory sequences have important role in the pausing of replication/transcription and generation of subgenomic RNAs. Results: In the present bioinformatics analysis, a consensus secondary structure was identified among negative sense subgenomic RNAs of SARS-CoV-2. This consensus region is present at the adjacent of initiation codon. Conclusions: This study proposed that consensus structured domain could involve in mediating the long pausing of replication/transcription complex and responsible for subgenomic RNA production. Supplementary Information: The online version contains supplementary material available at 10.1186/s42269-023-01002-3.

6.
Curr Drug Targets ; 23(17): 1539-1554, 2022.
Article in English | MEDLINE | ID: covidwho-2271495

ABSTRACT

BACKGROUND: SARS-CoV-2 is the causative virus for the CoVID-19 pandemic that has frequently mutated to continue to infect and resist available vaccines. Emerging new variants of the virus have complicated notions of immunity conferred by vaccines versus immunity that results from infection. While we continue to progress from epidemic to endemic as a result of this collective immunity, the pandemic remains a morbid and mortal problem. OBJECTIVE: The SARS-CoV-2 virus has a very complex manner of replication. The spike protein, one of the four structural proteins of the encapsulated virus, is central to the ability of the virus to penetrate cells to replicate. The objective of this review is to summarize these complex features of viral replication. METHODS: A review of the recent literature was performed on the biology of SARS-CoV-2 infection from published work from PubMed and works reported to preprint servers, e.g., bioRxiv and medRxiv. RESULTS AND CONCLUSION: The complex molecular and cellular biology involved in SARS-CoV-2 replication and the origination of >30 proteins from a single open reading frame (ORF) have been summarized, as well as the structural biology of spike protein, a critical factor in the cellular entry of the virus, which is a necessary feature for it to replicate and cause disease.

7.
Clin Infect Dis ; 2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-2238598

ABSTRACT

BACKGROUND: There is no reliable microbiological marker to guide the indication and the response to antiviral treatment in patients with COVID-19. We aim to evaluate the dynamics of subgenomic RNA (sgRNA) in patients with COVID-19 before and after receiving treatment with remdesivir. METHODS: We included consecutive patients admitted for COVID-19 who received remdesivir according to our institutional protocol and accepted to participate in the study. A nasopharyngeal swab for qRT-PCR was collected at baseline, and after 3 and 5 days of treatment with remdesivir. Genomic and sgRNA were analyzed in those samples and main co-morbidities and evolution were collected for the analyses. The main outcomes were early discharge (≤10 days) and 30-day mortality. RESULTS: A total of 117 patients were included in the study, from which 24 had a negative sgRNA at baseline with a 62.5% (15/24) of early discharge (≤10 days) and no deaths in this group. From the 93 remaining patients, 62 of them had a negative sgRNA at day 5 with 37/62 (59.6%) of early discharge and a mortality of 4.8% (3/62). In the 31 patients subgroup with positive sgRNA after 5 days of RDV, the early discharge rate was 29% (9/31) and the mortality rate was 16.1% (5/31). In the multivariable analyses, the variables associated with early discharge were negative sgRNA at day 3, and not needing treatment with corticosteroids or ICU admission. CONCLUSIONS: Qualitative sgRNA could help monitoring the virological response in patients who receive remdesivir. Further studies are needed to confirm these findings.

8.
Open Forum Infect Dis ; 9(11): ofac619, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2235951

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) subgenomic RNA (sgRNA) may indicate actively replicating virus, but sgRNA abundance has not been systematically compared between SARS-CoV-2 variants. sgRNA was quantified in 169 clinical samples by real-time reverse-transcription polymerase chain reaction, demonstrating similar relative abundance among known variants. Thus, sgRNA detection can identify individuals with active viral replication regardless of variant.

9.
Clin Infect Dis ; 75(10): 1698-1705, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2116480

ABSTRACT

The novel coronavirus pandemic incited unprecedented demand for assays that detect viral nucleic acids, viral proteins, and corresponding antibodies. The 320 molecular diagnostics in receipt of US Food and Drug Administration emergency use authorization mainly focus on viral detection; however, no currently approved test can be used to infer infectiousness, that is, the presence of replicable virus. As the number of tests conducted increased, persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA positivity by reverse-transcription polymerase chain reaction (RT-PCR) in some individuals led to concerns over quarantine guidelines. To this end, we attempted to design an assay that reduces the frequency of positive test results from individuals who do not shed culturable virus. We describe multiplex quantitative RT-PCR assays that detect genomic RNA (gRNA) and subgenomic RNA (sgRNA) species of SARS-CoV-2, including spike, nucleocapsid, membrane, envelope, and ORF8. Viral RNA abundances calculated from these assays were compared with antigen presence, self-reported symptoms, and culture outcome (virus isolation) using samples from a 14-day longitudinal household transmission study. By characterizing the clinical and molecular dynamics of infection, we show that sgRNA detection has higher predictive value for culture outcome compared to detection of gRNA alone. Our findings suggest that sgRNA presence correlates with active infection and may help identify individuals shedding culturable virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/analysis , Self Report , Longitudinal Studies , RNA, Guide, Kinetoplastida , COVID-19/diagnosis
10.
Microbiol Spectr ; : e0244822, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2117717

ABSTRACT

Remdesivir (RDV) was the first antiviral drug approved by the FDA to treat severe coronavirus disease-2019 (COVID-19) patients. RDV inhibits SARS-CoV-2 replication by stalling the non structural protein 12 (nsp12) subunit of the RNA-dependent RNA polymerase (RdRp). No evidence of global widespread RDV-resistance mutations has been reported, however, defining genetic pathways to RDV resistance and determining emergent mutations prior and subsequent antiviral therapy in clinical settings is necessary. This study identified 57/149 (38.3%) patients who did not respond to one course (5-days) (n = 36/111, 32.4%) or prolonged (5 to 20 days) (n = 21/38, 55.3%) RDV therapy by subgenomic RNA detection. Genetic variants in the nsp12 gene were detected in 29/49 (59.2%) non responder patients by Illumina sequencing, including the de novo E83D mutation that emerged in an immunosuppressed patient after receiving 10 + 8 days of RDV, and the L838I detected at baseline and/or after prolonged RDV treatment in 9/49 (18.4%) non responder subjects. Although 3D protein modeling predicted no interference with RDV, the amino acid substitutions detected in the nsp12 involved changes on the electrostatic outer surface and in secondary structures that may alter antiviral response. It is important for health surveillance to study potential mutations associated with drug resistance as well as the benefit of RDV retreatment, especially in immunosuppressed patients and in those with persistent replication. IMPORTANCE This study provides clinical and microbiologic data of an extended population of hospitalized patients for COVID-19 pneumonia who experienced treatment failure, detected by the presence of subgenomic RNA (sgRNA). The genetic variants found in the nsp12 pharmacological target of RDV bring into focus the importance of monitoring emergent mutations, one of the objectives of the World Health Organization (WHO) for health surveillance. These mutations become even more crucial as RDV keeps being prescribed and new molecules are being repurposed for the treatment of COVID-19. The present article offers new perspectives for the clinical management of non responder patients treated and retreated with RDV and emphasizes the need of further research of the benefit of combinatorial therapies and RDV retreatment, especially in immunosuppressed patients with persistent replication after therapy.

11.
Archives of Clinical Infectious Diseases ; 17(3), 2022.
Article in English | Web of Science | ID: covidwho-2044156

ABSTRACT

Background: The prolonged persistence of viral ribonucleic acid (RNA) in coronavirus disease 2019 (COVID-19) patients and the difficulty in differentiating between infectious virus and noninfectious viral RNA have impeded the use of current molecular diag-nostic tests as a decision tool in quarantine termination. The performance of new methods to detect surrogate viability markers, such as subgenomic RNAs (sgRNAs), has been discussed, and numerous important questions are still needed to be addressed before broad implementation.Objectives: This study aimed to primarily evaluate the performance of SYBR green quantitative reverse transcription-polymerase chain reaction (RT-qPCR) targeting N and E sgRNAs as a surrogate of viability markersMethods: This pilot study was carried out to detect genomic RNAs (gRNAs) and sgRNAs using RT-qPCR in cell culture infected with severe acute respiratory syndrome coronavirus 2 and nasopharyngeal swabbing samples from COVID-19 patients, and the results were compared to viral culture as a gold standard method for infectious virus detection. The diagnostic parameters and Cohen's Kappa correlation index were then analyzed.Results: E subgenomic RNA detection was the most reliable predictor for actively replicating the virus as it showed the highest value of all diagnostic parameters with a good correlation with viral cultivation. The lowest cycle threshold value of gRNAs and sgN detection become undetectable by sgE within the range of 23 -26.Conclusion: Using a suitable sgRNA type was important for test accuracy. The findings suggested E sgRNA detection as a promising surrogate approach to indicate a truly active viral infection, and when performed with a low-cost molecular test of SYBR green-based assay, it could support huge demands for routine analysis.

12.
J Virol ; 96(18): e0103422, 2022 09 28.
Article in English | MEDLINE | ID: covidwho-2019727

ABSTRACT

The duration of SARS-CoV-2 genomic RNA shedding is much longer than that of infectious SARS-CoV-2 in most COVID-19 patients. It is very important to determine the relationship between test results and infectivity for efficient isolation, contact tracing, and post-isolation. We characterized the duration of viable SARS-CoV-2, viral genomic and subgenomic RNA (gRNA and sgRNA), and rapid antigen test positivity in nasal washes, oropharyngeal swabs, and feces of experimentally infected Syrian hamsters. The duration of viral genomic RNA shedding is longer than that of viral subgenomic RNA, and far longer than those of rapid antigen test (RAgT) and viral culture positivity. The rapid antigen test results were strongly correlated with the viral culture results. The trend of subgenomic RNA is similar to that of genomic RNA, and furthermore, the subgenomic RNA load is highly correlated with the genomic RNA load. IMPORTANCE Our findings highlight the high correlation between rapid antigen test and virus culture results. The rapid antigen test would be an important supplement to real-time reverse transcription-RCR (RT-PCR) in early COVID-19 screening and in shortening the isolation period of COVID-19 patients. Because the subgenomic RNA load can be predicted from the genomic RNA load, measuring sgRNA does not add more benefit to determining infectivity than a threshold determined for gRNA based on viral culture.


Subject(s)
COVID-19 , RNA, Viral , SARS-CoV-2 , Animals , COVID-19/diagnosis , COVID-19/virology , Cricetinae , Feces/virology , Genomics , Humans , Mesocricetus , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Shedding
13.
Virol Sin ; 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2008178

ABSTRACT

The ongoing COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a positive-stranded RNA genome. Current proteomic studies of SARS-CoV-2 mainly focus on the proteins encoded by its genomic RNA (gRNA) or canonical subgenomic RNAs (sgRNAs). Here, we systematically investigated the translation landscape of SARS-CoV-2, especially its noncanonical sgRNAs. We first constructed a strict pipeline, named vipep, for identifying reliable peptides derived from RNA viruses using RNA-seq and mass spectrometry data. We applied vipep to analyze 24 sets of mass spectrometry data related to SARS-CoV-2 infection. In addition to known canonical proteins, we identified many noncanonical sgRNA-derived peptides, which stably increase after viral infection. Furthermore, we explored the potential functions of those proteins encoded by noncanonical sgRNAs and found that they can bind to viral RNAs and may have immunogenic activity. The generalized vipep pipeline is applicable to any RNA viruses and these results have expanded the SARS-CoV-2 translation map, providing new insights for understanding the functions of SARS-CoV-2 sgRNAs.

14.
Clin Kidney J ; 15(8): 1450-1454, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1895808

ABSTRACT

Safe and timely discontinuation of quarantine of in-center hemodialysis (HD) patients with a previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a challenging issue for the nephrological community because current guidelines for ending isolation do not mention dialysis patients. To prevent potentially fatal outbreaks of coronavirus disease 2019 (COVID-19), a cautionary approach has been adopted by most dialysis units. The criteria for ending the isolation in the HD population generally coincide with those recommended for immunocompromised people. Thus, a test-based strategy relying on two consecutive negative reverse transcriptase-polymerase chain reaction (RT-PCR) nasopharyngeal swabs has been adopted to terminate quarantine. This strategy has the disadvantage of prolonging isolation as RT-PCR positivity does not equate to SARS-CoV-2 infectivity. Consequentially, prolonged positivity of SARS-CoV-2 results in excessive workload for the HD staff who must face an increasing number of COVID-19 patients requiring isolation. This condition leads also to serious implications for the patients and their households including work productivity loss, postponement of health-care appointments and an increased risk of COVID-19 reinfection. To counteract this problem, other diagnostic tests should be used to provide the best care to HD patients. Recent results seem to encourage the use of RT-PCR cycle threshold (Ct) values and rapid antigen tests given their better correlation with cell culture for SARS-CoV-2 than RT-PCR testing. Here, we provide an overview of the current scientific evidence on the tests used to verify the infectiousness of the virus in order to stimulate the nephrological community to adopt a streamlined and pragmatic procedure to end isolation in COVID-19 patients on HD.

15.
J Clin Med ; 11(12)2022 Jun 09.
Article in English | MEDLINE | ID: covidwho-1884245

ABSTRACT

In the tissue donation field, to prevent pathogen transmission, all donors are screened by postmortem swabs for SARS-CoV-2 using qRT-PCR. Corneas from donors who tested positive for SARS-CoV-2 were subjected to further investigations. Corneal transplants and culture medium from positive donors were cultured under appropriate safety conditions for further analyses. Cornea tissue samples, including sclera/limbus/cornea, and culture media were taken at different time points for testing for SARS-CoV-2 using qRT-PCR, immunohistochemistry (IHC) and subgenomic RNA (sgRNA) analysis. Between January and May 2021, in four donors with initial negative premortem rapid tests, SARS-CoV-2 was detected post-mortem using qRT-PCR. In these cases, SARS-CoV-2 was observed at the beginning of cultivation in both tissue and culture medium using qRT-PCR and IHC. The virus was mainly localized in the limbus epithelial cells, with a stable detection level. Premortem rapid tests are potentially insufficient to exclude SARS-CoV-2 infection in corneal donors. While, for SARS-CoV-2, the risk of infection via transplants is considered low, a residual risk remains for presymptomatic new infections. However, our investigations provide the first indications that, with organ cultures, the risk of virus transmission is minimized due to the longer minimum culture period.

16.
Diagnostics (Basel) ; 12(6)2022 May 28.
Article in English | MEDLINE | ID: covidwho-1869512

ABSTRACT

We used nasopharyngeal swab samples of patients with a symptomatic (n = 82) or asymptomatic (n = 20) coronavirus disease 2019 (COVID-19) diagnosis to assess the ability of antigen detection tests to infer active (potentially transmissible) or inactive (potentially non-transmissible) infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using the subgenomic RNA (sgRNA) as an active replication marker of SARS-CoV-2, 48 (76.2%), 56 (88.9%), and 63 (100%) of 63 samples with sgRNA positive results tested positive with the SD BIOSENSOR STANDARD Q COVID-19 Ag (Standard Q), the SD BIOSENSOR STANDARD F COVID-19 Ag FIA (Standard F), or the Fujirebio LUMIPULSE G SARS-CoV-2 Ag (Lumipulse) assay, respectively. Conversely, 37 (94.9%), 29 (74.4%), and 7 (17.9%) of 39 samples with sgRNA negative results tested negative with Standard Q, Standard F, or Lumipulse, respectively. Stratifying results by the number of days of symptoms before testing revealed that most antigen positive/sgRNA positive results were among samples tested at 2-7 days regardless of the assay used. Conversely, most antigen negative/sgRNA negative results were among samples tested at 16-30 days only when Standard Q or Standard F were used. In conclusion, based on our findings, a negative antigen test, especially with the Lumipulse assay, or a positive antigen test, especially with the Standard F assay, may suggest, respectively, the absence or presence of replication-competent SARS-CoV-2.

17.
Microbiol Spectr ; 10(3): e0050322, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1861587

ABSTRACT

Determination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity is important in guiding the infection control and differentiating between reinfection and persistent viral RNA. Although viral culture is the gold standard to determine viral infectivity, the method is not practical. We studied the kinetics of SARS-CoV-2 total RNAs and subgenomic RNAs (sgRNAs) and their potential role as surrogate markers of viral infectivity. The kinetics of SARS-CoV-2 sgRNAs compared to those of the culture and total RNA shedding in a prospective cohort of patients diagnosed with coronavirus disease 2019 (COVID-19) were investigated. A total of 260 nasopharyngeal swabs from 36 patients were collected every other day after entering the study until the day of viral total RNA clearance, as measured by reverse transcription PCR (RT-PCR). Time to cessation of viral shedding was in order from shortest to longest: by viral culture, sgRNA RT-PCR, and total RNA RT-PCR. The median time (interquartile range) to negativity of viral culture, subgenomic N transcript, and N gene were 7 (5 to 9), 11 (9 to 16), and 18 (13 to 21) days, respectively (P < 0.001). Further analysis identified the receipt of steroid as the factors associated with longer duration of viral infectivity (hazard ratio, 3.28; 95% confidence interval, 1.02 to 10.61; P = 0.047). We propose the potential role of the detection of SARS-CoV-2 subgenomic RNA as the surrogate marker of viral infectivity. Patients with negative subgenomic N RNA RT-PCR could be considered for ending isolation. IMPORTANCE Our study, combined with existing evidence, suggests the feasibility of the use of subgenomic RNA RT-PCR as a surrogate marker for SARS-CoV-2 infectivity. The kinetics of SARS-CoV-2 subgenomic RNA should be further investigated in immunocompromised patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Biomarkers , COVID-19/diagnosis , Humans , Prospective Studies , RNA, Viral/genetics , SARS-CoV-2/genetics
18.
Clin Infect Dis ; 75(1): e27-e34, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-1852999

ABSTRACT

BACKGROUND: Data on the clinical and virological characteristics of the Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are limited. This prospective cohort study compared the characteristics of the Delta variant to other variants. METHODS: Adult patients with mild coronavirus disease 2019 (COVID-19) who agreed to daily saliva sampling at a community isolation facility in South Korea between July and August 2021 were enrolled. Scores of 28 COVID-19-related symptoms were recorded daily. The genomic RNA and subgenomic RNA from saliva samples were measured by real-time reverse-transcription polymerase chain reaction (PCR). Cell cultures were performed on saliva samples with positive genomic RNA results. RESULTS: A total of 141 patients (Delta group, n = 108 [77%]; non-Delta group, n = 33 [23%]) were enrolled. Myalgia was more common in the Delta group than in the non-Delta group (52% vs 27%, P = .03). Total symptom scores were significantly higher in the Delta group between days 3 and 10 after symptom onset. Initial genomic RNA titers were similar between the 2 groups; however, during the late course of disease, genomic RNA titers were higher in the Delta group. Negative conversion of subgenomic RNA was slower in the Delta group (median 9 vs 5 days; P < .001). The duration of viral shedding in terms of positive viral culture was also longer in the Delta group (median 5 vs 3 days; P = .002). CONCLUSIONS: COVID-19 patients infected with the Delta variant exhibited prolonged viable viral shedding with more severe symptoms than those infected with non-Delta variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , Prospective Studies , RNA , RNA, Viral , SARS-CoV-2/genetics
19.
Gene Rep ; 27: 101619, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1819494

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a remarkably contagious and pathogenic viral infection arising from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first appeared in Wuhan, China. For the time being, COVID-19 is not treated with a specific therapy. The Food and Drug Administration (FDA) has approved Remdesivir as the first drug to treat COVID-19. However, many other therapeutic approaches are being investigated as possible treatments for COVID-19. As part of this review, we discussed the development of various drugs, their mechanism of action, and how they might be applied to different cases of COVID-19 patients. Furthermore, this review highlights an update in the emergence of new prophylactic or therapeutic vaccines against COVID-19. In addition to FDA or The World Health Organization (WHO) approved vaccines, we intended to incorporate the latest published data from phase III trials about different COVID-19 vaccines and provide clinical data released on the networks or peer-review journals.

20.
J Infect Dis ; 226(5): 788-796, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-1774394

ABSTRACT

While detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by diagnostic reverse-transcription polymerase chain reaction (RT-PCR) is highly sensitive for viral RNA, the nucleic acid amplification of subgenomic RNAs (sgRNAs) that are the product of viral replication may more accurately identify replication. We characterized the diagnostic RNA and sgRNA detection by RT-PCR from nasal swab samples collected daily by participants in postexposure prophylaxis or treatment studies for SARS-CoV-2. Among 1932 RT-PCR-positive swab samples with sgRNA tests, 40% (767) had detectable sgRNA. Above a diagnostic RNA viral load (VL) threshold of 5.1 log10 copies/mL, 96% of samples had detectable sgRNA with VLs that followed a linear trend. The trajectories of diagnostic RNA and sgRNA VLs differed, with 80% peaking on the same day but duration of sgRNA detection being shorter (8 vs 14 days). With a large sample of daily swab samples we provide comparative sgRNA kinetics and a diagnostic RNA threshold that correlates with replicating virus independent of symptoms or duration of illness.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Kinetics , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL